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Abstract
By solving the Euler–Lagrange equations, we determine the elastic curves in
the two-dimensional sphere which are circular at rest. We characterize the
family of closed critical curves by a rational condition and the existence of
closed elastic curves for the different possible values of their curvature at rest
is proved. In the final part of the paper, we utilize a numerical approach to get
a better understanding of the space of closed critical curves. In this manner we
analyse their shape, uniqueness and minimizing properties.

PACS numbers: 02.30.Xx, 02.40.Hw, 02.40.Yy, 45.20.Jj

1. Introduction

Let us consider a thin stiff rod in Euclidean space which is in the shape of a straight line
when no forces act on it. Let us bend the rod and assume that it has a circular cross-section
everywhere. Then the bent rod can be described as a regular curve γ : I → R

3 whose elastic
energy is given by

∫
γ

κ2, where κ is the curvature of γ . This can be generalized to the case
of a stiff rod with a circular cross-section, having an arbitrary shape of curvature κo in its
undeformed state. The bending energy in this case is given by

F(γ ) =
∫

γ

(κ − κo)
2. (1)

Equilibrium positions of the stiff bent rod can be studied by computing the critical points of (1)
under the boundary conditions determined by the concrete problem we wish to analyse [6]. If
γ is a plane curve and κo = 0 (respectively, κo = constant �= 0) the above problem corresponds
to the classical model for elastic curves which are straight lines at rest (respectively, a circle
at rest) proposed by D Bernoulli around 1740. This geometric approach can be used to model
stiff polymers, vortices in fluids, superconductors, membranes and mechanical properties of
DNA molecules. (For more details see [5] and the references therein.)

Actually, denoting the geodesic curvature by κ , the variational problem induced by (1)
can be considered in any Riemannian manifold M

n. Most interesting cases occur when M
n
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is a space of constant curvature. Also, since closed critical points are of special geometric
significance, we shall focus our attention on closed critical curves. Under these assumptions, n
must be at most three and elastic curves have been used to produce examples of axis-symmetric
vesicles and Hopf vesicles under the Canham–Helfrich model [2, 5].

From now on, we restrict ourselves to the case in which κo = constant = −λ and
n = 2. At this point, it is also interesting to consider critical points of the bending energy
for variations with constant length. The energy functional to be minimized in this case is
Fλ

µ(γ ) = ∫
γ

(κ + λ)2 + µ.

Assume first that M
n = R

2. If λ = 0, critical points of Fλ
µ are the classical elastica of

Bernoulli. Their possible shapes where discovered by L Euler. There are no closed plane free
elastica (µ = 0), but if one admits a constraint on the length (µ �= 0), then in addition to
non-closed examples also circles and Bernoulli eight-curves appear. Classical plane elastica
have also been classified under different boundary conditions by A Linner [8]. Clearly, since
the total curvature is constant on a regular homotopy class of plane curves, no new examples
of plane elastica appear if one considers λ �= 0.

Thus, the next natural step is the analysis of closed critical points of

Fλ(γ ) =
∫

γ

(κ + λ)2 (2)

in the 2-sphere. In this case, critical points of (2) correspond to elastic curves in S
2(1) which

are circles of curvature −λ at rest and with no penalty on the length. We point out that this
functional is affected by the orientation of the curve: if γ (s) is a critical point of Fλ, then
γ (−s) is a critical point of F−λ. So we may assume λ � 0 and critical points of (2) will
be called λ-elastic curves for simplicity. Hence, our task will be to study closed λ-elastic
curves in S

2(1). Closed λ-elastic curves in the hyperbolic plane H
2(−1) will be analysed in a

forthcoming paper [3].
A careful analysis of this problem would require to complete the following process:

(i) computation and integration of the Euler–Lagrange (EL) equations; (ii) finding the
periodic solutions of the EL equations; (iii) establishing closedness conditions for those
curves associated with them; (iv) classification of the closed critical curves; (v) stability and
determination of the local minima.

This program has been completed by J Langer and D Singer for classical elastica (λ = 0)

in [7]. In section 2, we show how one can use their techniques in order to fulfil steps (i) to
(iii): from the first variation formula one can obtain the EL equation as a second-order ODE
expressed in terms of the curvature κ of the critical curve γ . Moreover, restriction to the space
of closed curves results in that the boundary term of the first variation formula vanishes. Once
periodic solutions of the EL equation are found, we establish a closedness criterion in terms
of the curvature of the critical curve (see proposition 1). Then, we use it to prove the existence
of an infinite family of closed critical curves for any λ �= 0. In [2] we made this analysis for
the particular case λ > 8 and d ∈ (δ1, δ2) (see section 2 for the meaning of these parameters)
with the purpose of constructing new examples of Hopf vesicles in S

3(1).

We note, however, that questions (iv) and (v) are more subtle for λ �= 0 and require
much more elaborate constructions. For a given λ, the space of periodic solutions to the EL
equations depends on a real parameter d > 0. A critical curve γ will be closed if its angular
variation in one period of its curvature is a rational multiple of π . This gives a condition
to be satisfied by d which might be used to classify the closed critical points. However, for
most values of λ, although we can prove the existence of values of d satisfying the closedness
condition, we cannot express it explicitly in terms of d. But even when this is possible, the
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explicit expression is so complicated that it is hard to derive good information for classification
purposes.

On the other hand, in order to determine the critical points with minimum energy, one
may want to obtain the second variation formula of Fλ(γ ). We have computed it in [1], but the
expression for the curvature function makes it very difficult to handle except for the simplest
cases: stability of the constant curvature critical curves was determined in [2] for λ > 8. Apart
from the case λ = 0, where geodesics are the only stable closed critical points [7], it is not
known whether or not there are stable closed critical curves with non-constant curvature.

Hence, one might try to get some numerical insight concerning steps (iv) and (v), and
then infer some properties of the space of closed solutions. We make this analysis numerically
in section 3. By using a coordinate system especially adapted to the problem, where the
coordinates of the closed critical points can be obtained by quadratures and the closedness
conditions can be clearly stated, we design an algorithm which is well suited to carry over
this numerical investigation and that can be combined with available software in order to
obtain graphical information and derive plausible hypothesis. Some of them can be formally
proved as explained in section 3, while others can be used as strong support for open working
lines. Finally, some technical results are banished to the appendices in section 4. Computer
programing and tedious numerical algorithms are not included.

2. λ-elastic curves in S
2(1)

Let γ (t) be a regular curve in S
2(1), that is γ : [0, 1] → S

2(1) is a C∞ immersion in the
two-dimensional standard unit sphere. We let s denote the arclength parameter and we use
γ (s), κ(s) for the corresponding reparametrization and for the curvature function of γ (t)

respectively. Given a real number λ � 0, we consider the variational problem of minimizing
the functional

Fλ(γ ) =
∫

γ

(κ + λ)2 ds, (3)

amongst the set of closed immersed curves in S
2(1). The first variation formula of Fλ can

be computed by using standard arguments. For completeness, we give a short derivation of
this formula in appendix A. As we explained in the introduction, we shall focus on Fλ acting
on closed curves, although there are other natural choices of boundary data for which the
boundary term in the first variation formula drops out. From the first variation formula (see
(A.4) and (A.5)) we obtain that a critical point of Fλ will satisfy the following Euler–Lagrange
equation

2κss + κ3 + (2 − λ2)κ + 2λ = 0, (4)

where the subscript s denotes differentiation with respect to the arclength. Circles of curvature
ηo = −λ are trivial solutions of (4) and absolute minima of (3). If λ2 < 8, there are no other
critical circles. If λ2 > 8, circles of curvature η1 = λ+

√
λ2−8
2 and η2 = λ−√

λ2−8
2 are also critical

points. Assume that κ(s) is not constant. Multiplying (4) by κs(s) we obtain a first integral

4κ2
s = d − (κ + λ)2((κ − λ)2 + 4), (5)

where d > 0 is a real constant. Denote by Qd(x) = d−(x +λ)2((x−λ)2 +4), d > 0. By using
the method of phase portraits for instance, one can see that non-constant solutions of (5) are
periodic functions. Actually, it can be proved that they are given by elliptic functions. For our
purposes however, we will need to solve (5) explicitly. When solving

∫
dκ

Qd(κ)
1
2

= ± 1
2

∫
ds,

one can discuss the solutions of (5) in terms of the roots of the polynomial Qd(x), being its
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d− δ2

d− δ1

κ = η1κ = η2κ = λ

Qd (κ)

d < δ1

d ∈ (δ1, δ2)

d > δ20

0

0

d

Qd (κ)

κ = λ

0

d

Figure 1. Pictures of Qd corresponding to the four-root and two-root cases respectively.

each (λ, d)
2 curves

d
=
δ 2

(λ
)

d = δ1 (λ)
d = 16λ

2

d = λ4 + 4λ
2

d

λ

λ = 2
√

2 λ = η λ = 4

Figure 2. Evolution of the different parameters depending on λ.

Table 1. For λ = 2
√

2 first column also applies as long as d �= 108.

Roots of Qd λ < 2
√

2 2
√

2 < λ < η λ > η

α1 < α2 < 0 d < ξ d < ξ d < δ1 < ξ

α1 < α2 = 0 d = ξ d = ξ NO
α1 < α2 < 0 < α3 < α4 NO NO δ1 < d < ξ

α1 < α2 = 0 < α3 < α4 NO NO d = ξ

α1 < 0 < α2 < α3 < α4 NO δ1 < d < δ2 ξ < d < δ2

α1 < 0 < α2 d > ξ ξ < d < δ1 or d > δ2 d > δ2

multiple roots those which affect the integrability. If Qd(x) has no multiple roots, then it
admits either 2 or 4 simple roots (see figure 1), depending on the values of the parameters λ

and d (see table 1 and figure 2), where we have set Qo(x) = −(x + λ)2((x − λ)2 + 4) and

δ1 = −Qo(η1), δ2 = −Qo(η2), (6)

ξ = λ4 + 4λ2, η = (5 + 3
√

3)
1
2 . (7)

In the absence of multiple roots, the simple roots of Qd(x), αi, i ∈ {1, 2, 3, 4}, can be classified
according to the values of the above parameters as shown in table 1.

Our first task will be to explore the set of solutions of (5). For any λ � 0, d > 0, we have
that α1 < −λ < α2, and also that Qd(x) � 0 as long as α1 � x � α2 or α3 � x � α4. Using
standard arguments and formulae I.3.145 and I.3.147 of [4] we can solve (5). For those cases
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in which the values of λ and d give rise to four roots, α1 < α2 < α3 < α4 of Qd(x), we obtain
two solutions of (5). The first one is given by

κλ
d (s) = α2(α4 − α1) − α4(α2 − α1) cn2(rs,M)

(α4 − α1) − (α2 − α1) cn2(rs,M)
, (8)

where

r =
√

(α4 − α2)(α3 − α1)

4
, M =

√
(α4 − α3)(α2 − α1)

(α4 − α2)(α3 − α1)

and cn(rs,M) is the Jacobi elliptic cosine. The curvature function κλ
d (s) oscillates between

α1 = κλ
d (0) and κλ

d

(
K(M)

r

) = α2, K(M) being the complete elliptic integral of the first kind.
The second solution κ̃λ

d (s) is obtained by interchanging 1 ↔ 3, 2 ↔ 4 in the right term
of (8). This time it oscillates between α3 = κ̃λ

d (0) and κ̃λ
d

(
K(M)

r

) = α4. If we denote by
γ λ

d (s), γ̃ λ
d (s) the (unique, up to rigid motions) curves in S

2(1) whose curvatures are κλ
d (s) and

κ̃λ
d (s) respectively, then they are both convex curves (that is, the curvature is a non-negative

function) if λ2 > 5 + 3
√

3 and d < λ4 + 4λ2. One curve is convex but not the other one,
otherwise. Analogously, for those cases in which the values of the parameters λ and d produce
two simple roots α1 < α2, the solution of (5) is given by

κλ
d (s) = (p + q)(qα2 + pα1) − 2pq(α2 − α1) cn(rs,M)

(p + q)2 − (p − q)2 cn2(rs,M)
+ · · ·

+
(p − q)(qα2 − pα1) cn2(rs,M)

(p + q)2 − (p − q)2 cn2(rs,M)
, (9)

with

p2 = (α2 + α1)
2 + 2α2

2 − 2λ2 + 4, M = 1

2

√
(α2 − α1)2 − (p − q)2

pq
, (10)

q2 = (α2 + α1)
2 + 2α2

1 − 2λ2 + 4, r =
√

pq

2
. (11)

Now κλ
d (s) oscillates between α1 = κλ

d (0) and κλ
d

( 2K(M)

r

) = α2.

Secondly, we introduce a coordinate system adapted to the problem. In order to ease the
notation for given λ � 0 and d > 0, the corresponding periodic solution of (5), κλ

d (s), will be
denoted simply by κ(s). Let ρ be its period. Take γ (s) the curve in S

2(1) associated with κ(s)

and represent its Frenet frame by {T (s),N(s)}. Then, the vector field along γ (s) defined by

J = (κ2 − λ2)T + 2κsN, (12)

can be extended to a Killing field on S
2(1) which we also denote by J (s) [2, 7]. Choose

geographic coordinates, x(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), so that the equator gives
the only integral geodesic of J (s)

xθ = bJ . (13)

The advantage of this coordinate system lies in which it will allow us to express the
closedness condition for critical curves in a simple manner (it will be useful also for numerical
computations). Indeed, if we assume that κ(so) is a minimum of the curvature of γ (s) and we
denote by � the integral curve of J (s) through γ (so), then both curves are tangent at γ (so)

by (12). Hence, |xθ |2 = 1
1+κ2

�

at γ (so), where κ� denotes the geodesic curvature of � and,

therefore, κ�(so) = −2
κ(so)−λ

. Combining this with (5) we obtain b2d = 1.
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Now, T (s) = θ ′(s)xθ + φ′(s)xφ and then θ ′(s) = 〈T ,xθ 〉
sin2 φ

. Hence if we make use of (5),
(12) and (13) we obtain

θs(s) = κ2 − λ2

b(d − 4(κ + λ)2)
, b2(d − 4(κ + λ)2) = sin2 φ. (14)

Thus, by using the above notation, we have the following closedness condition [2].

Proposition 1. Let γ (s) be a curve in S
2(1) corresponding to a periodic solution of (5) κ(s)

with period ρ. Then γ (s) is a closed λ-elastic curve, if and only if, its progression angle in
one period of its curvature,


λ(d) =
√

d

∫ ρ

0

(κ2 − λ2)

d − 4(κ + λ)2
ds, (15)

is a rational multiple of π.

Our final task in this section will be to show that, for any real number λ � 0, the above
closedness condition is fulfilled by an infinite family of λ-elastic curves. Thus, we want to
investigate the range of variation of 
λ(d) as d moves in (0, +∞).

Fix λ � 0 and assume d > 0. Then the polynomial Qd(x) may have either two real roots
α1 � α2, or four real roots α1 � α2 � α3 � α4. If Qd(x) has two simple roots, we consider
the solution of (5) given by (9). If it has four simple roots, we select the solution κ(s) which
moves between α1 and α2 given by (8). Then, we define 
λ : (0,∞) → R by (15). Using (5)
this function turns out to be


λ(d) =
√

d

∫ α2

α1

(κ2 − λ2)

(d/4 − (κ + λ)2)
√

Qd(κ)
dκ. (16)

As always, γ (s) denotes the curve of S
2(1) which is determined by κ(s). We see that 
λ(d)

moves continuously as d moves in (0, +∞) with two exceptions: (a) those cases in which
d gives rise to multiple roots of Qd(κ); (b) if d = 16λ2. Multiple roots of Qd(x) affect
the integrability of (16). On the other hand, if we have d = 16λ2 and the values of λ and
d give rise to two roots of Qd(x), then we get that α2 = λ is a root of Qd(κ). Hence
κ
(

K(M)

r

) = α2 = λ and κs

(
K(M)

r

) = 0. Thus, J (s) as given by (12), vanishes at s2 = K(M)

r
,

so that the corresponding curve γ (s) passes at s2 through a pole of S
2(1) for the selected

parametrization (13). Therefore d = 16λ2 causes a gap of length 2π in 
λ(d). If d = 16λ2

and the values of λ, d give rise to four roots of Qd(x), then we would have that α4 = λ is
a root of Qd(κ) and a similar argument is valid in this case. Now, for a fixed λ, we wish to
know how 
λ(d) behaves as d approaches to the extremes of its intervals of continuity. This
analysis has been made in appendix B.

We set


1 = −4λ
K(M)

r
+ 8λ2

∫ λ

ς

dκ

(κ + 3λ)
√

(λ − κ)(κ − ς)((κ − u)2 + v2)
, (17)

where M and r are given in (10) and (11), K(M) denotes the complete elliptic integral of the
first kind, and ς is the only negative root of β3 + λβ2 + β(λ2 − 4) − λ(λ2 − 12) = 0.

In view of proposition 1, lemma 5 of appendix B and the fundamental theorem for curves
in real space forms (which guarantees that a curve in S

2(1) is totally determined by its curvature
up to rigid motions), we can obtain a multitude of examples of closed λ-elastic curves in S

2(1)

as follows.

Theorem 2. Fix a real number λ � 0 and let Fλ(γ ) = ∫
γ
(κ + λ)2 ds be the elastic energy

functional acting on the space of closed immersed curves � of S
2(1). Then, there exist infinitely
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many values of d > 0 for which the corresponding λ-elastic curves (which are completely
determined by either (8) or (9)) satisfy the closedness condition given in proposition 1.
Therefore, there exist infinitely many closed critical points of Fλ(γ ) in S

2(1).

More concretely, looking at table 4 in appendix B more carefully and playing conservative,
we can construct a two-parameter family of λ-elastic curves

Corollary 3. Let λ be a non-negative real number and take 
1 as defined in (17).

(i) If 0 � λ < 2
√

2, then for every pair of integer numbers m, n ∈ Z satisfying
∣∣
1

2π
− m

n

∣∣ < 1
2 ,

there exists a closed λ-elastic curve γmn(s) in S
2(1).

(ii) If λ � 2
√

2, then for every pair of integer numbers m, n ∈ Z satisfying m
n

< 0, there
exists a closed λ-elastic curve γmn(s) in S

2(1).

In any of the above cases, γmn(s) closes up after n periods of its curvature and m trips
around the equator.

Above bounds for m, n in corollary 3 are conservative. This means that there are closed
critical points of Fλ(γ ) which do not satisfy the above conditions. Also if λ = 0, then 
0(d)

moves continuously and monotonically in (0, 2π) what implies the uniqueness of the critical
points for given values of m and n, [7]. From the discussion in lemma 5, we see that if λ > 0
then 
λ(d) is not continuous in (0,∞). Again, from lemmas 5 and 6 we have that uniqueness
of solutions does not hold if λ � 2

√
2 because 
λ(d) is not monotonic (see also figure 4(c)).

If 0 < λ < 2
√

2, monotonicity is still undetermined, but figure 4(b) suggests that 
λ(d) is
not going to be monotonic either.

Moreover, the choice λ = 0 can be seen as a limiting case of that considered in the proof
of lemma 5. If λ = 0, then 
1 = π and we see that for every pair of integer numbers m, n ∈ Z

satisfying
∣∣m

n

∣∣ < 1, there exists a closed classical elastic curve γmn(s) in S
2(1), [7].

Having in mind a possible classification of the critical points, a better understanding 
λ(d)

would be desirable. Furthermore, establishing the intervals of monotonicity of 
λ(d) would
give us information about uniqueness of the critical curves. Thus, an explicit determination
of 
λ(d) should be helpful for these purposes. This has been done for λ = 0 in [7], where
using an explicit expression of 
0(d) and formula (9) with λ = 0, the authors were able to
prove after long computations that the space of classical elastic curves in S

2(1) can be indexed
one-to-one by pairs of integers 0 < m < n. They also showed that the only stable elastic
curves are geodesics. But even if one can determine explicitly 
λ(d) in general, an extension
of the previous procedure for an arbitrary λ can be a very complicated task. To illustrate this
point one may want to consult [2], where a special situation included in the case λ > 2

√
2

was considered and we were able to compute 
λ(d) explicitly. Finally, the next proposition
gives us examples of particular interest in what follows, as we shall see later.

Proposition 4. For any λ � 2
√

2 there exists a closed ‘figure eight’ λ-elastic curve in S
2(1).

Proof. On the one hand, we know from lemma 6 of appendix B that 
λ(d) takes positive
values for d 
 0. On the other hand, if we take µ as in (19), then we see from lemma 5 of
appendix B that limd→16λ2+ 
λ(d) = 
1 +π < 0 if 8 < λ2 < µ2, and limd→δ2

+ 
λ(d) = −∞,

if µ2 < λ2. Hence, since 
λ(d) is continuous in (16λ2,∞) (respectively, in (δ2,∞)) when
8 < λ2 < µ2 (respectively, when µ2 < λ2) there exists a certain value of d, d > 16λ2

(respectively, d > δ2) such that 
λ(d) = 0. Thus, the corresponding curve closes up in one
period of the curvature and zero trips around the equator. Now, by making a shape analysis
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Table 2. Data relative to the curves of figure 3 as d does not belong to (δ1, δ2).

Curve d n n

λ(d)

2π
α1 α2

1 2127.126 976 15 1 −7.840 702 7270 7.483 051 7274
2 1057.300 042 21 1 −6.927 107 0253 6.402 294 8105
3 631.279 089 1 0 −6.377 402 0659 5.661 988 4651
4 394.721 729 6 −1 −5.956 383 1887 4.958 383 3200

δ2 = 329.254 833 995 939 04 . . .

δ1 = 238.745 166 004 060 958 . . .

7 225.889 432 00 11 −1 −5.541 655 8645 −1.382 571 6688
8 103.237 699 72 23 −1 −5.091 494 7550 −2.507 537 3881

Table 3. Data relative to the curves of figure 3 as d moves in (δ1, δ2).

Curve d n n

λ(d)

2π
n


̃λ(d)
2π

α1 α2 α3 α4

5 320.956 5512 4 −1 −1 −5.792 487 0.030 717 1.171 036 4.590 732
6 271.178 6235 8 −1 −1 −5.667 985 −0.874 617 2.347 681 4.194 922

δ1 = 238.745 166 004 060 958 . . .

similar to that of subsection 3.1, we see that such a critical point is a ‘figure eight’ curve. This
concludes the proof. �

3. Numerical approach

Our purpose in this section is to address some of the questions outlined in the previous
discussion from a numerical point of view. This will include estimation of 
1, evaluation
of the monotonicity intervals for 
λ(d) and graphical determination of shape and energy of
closed λ-elastic curves.

We use the notation convention introduced just before proposition 1. For a fixed λ � 0
and any d > 0, we denote by κ(s) the periodic solution of (5) obtained from d. Assume that
its period is ρ. Let γ (s) be the critical curve of Fλ determined by having as the curvature
function κ(s). Moreover, 
λ(d) as given in (15), and Eλ(d) which we define by

Eλ(d) =
∫ ρ

o
(κ + λ)2 ds, (18)

will represent the angular variation and the energy of the critical curve γ (s) in one period of
its curvature, respectively. Note that in defining Eλ(d) we are using the same convention as
we did in the definition of Fλ: if Qd(x) has four simple roots, we consider the solution κ(s)

which moves between α1 and α2 given by (8).

3.1. Shape of closed critical points

Here we obtain some qualitative information about the closed critical points γ (s) which is
complemented numerically in tables 2, 3 and figure 3. We just consider the case λ > µ, where
we set

µ =
√

11

2
+

5
√

5

2
. (19)
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(b) curve 2

(d) curve 4

(f) curve 6

(h) curve 8

(a) curve 1

(c) curve 3

(e) curve 5

(g) curve 7

Figure 3. Curves corresponding to data in tables 2 and 3.

Other cases can be analysed similarly. Closed critical curves correspond to the values of d
which satisfy the condition (15) as d moves in (0, δ2), (δ2,∞). A rough description of critical
curves shapes can be given using (4), (5) and (12). From these equations, we see that if γ (s)

were a closed λ-elastica in S
2(1), then κss(s̃) = 0 at a point s̃ would imply that κs(s̃) �= 0,

unless d = 0, δ1 or δ2. We choose d �= 0, δ1, δ2. Now figure 1 shows the two possible shapes
of Qd(x). As we know, Qd(x) may have up to four simple roots αi = κ(si), αi < αj , i < j ,
κs(si) = 0, i, j ∈ {1, 2, 3, 4}. Using this information in (4), (5), (12) and considering the
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coordinate system described in (13), we see that

d|J |2
ds

(si) = 0,
d2|J |2

ds2
(si) = −8[(κ + λ)κss](si). (20)

Start with a large enough value of d. If d is greater than δ2 and satisfies the closedness
condition given by proposition 1, then Qd(x) has two roots αi = κ(si), i ∈ {1, 2},
verifying α1 < −λ < 0 < λ < α2, and the curvature of the closed critical curve moves
continuously between its minimum α1 = κ(s1) and its maximum α2 = κ(s2). Hence
κss(s1) > 0, κss(s2) < 0 and using (20) we have d2|J |2

ds2 (si) > 0, i ∈ {1, 2}.
Therefore, |J |2 reaches local minima at si, i ∈ {1, 2}. Thus γ (si), i ∈ {1, 2}, are locally

the farthest points to the equator on γ (s). The closer d is to δ2 the more periods of the
curvature and/or trips around the equator the curve γ (s) will need to close up. These curves
are embedded until d reaches the value for what 
λ

α1
(d), as defined in (B.9), vanishes. At that

moment, they start to have multiple points. See figures 3(a)–(d).
If δ1 < d < δ2, then for each value of d satisfying (15), Qd(x) has four roots

αi = κ(si), i ∈ {1, 2, 3, 4}, verifying α1 < −λ < α2 < α3 < λ < α4 and 0 < α3.
Then, two different closed critical curves γ (s) and γ̃ (s) will appear and their respective
curvatures κ(s), κ̃(s) satisfy α1 � κ(s) � α2 and 0 < α3 � κ̃(s) � α4. That is, γ̃ (s) is
always convex. Moreover, if λ verifies λ2 < 5 + 3

√
3, then γ (s) is not convex for any value

of d. If λ2 > 5 + 3
√

3, then γ (s) is not convex either unless d < ξ = λ4 + 4λ2, in which case
0 < α0 and it turns out to be convex.

Assume that κ(s) reaches its minimum at s1, α1 = κ(s1) and its maximum at s2,
α2 = κ(s2). Hence, as in the previous case, κss(s1) > 0, κss(s2) < 0 and using (20) we
have d2|J |2

ds2 (si) > 0, i ∈ {1, 2}. Therefore, |J |2 reaches local minima at si, i ∈ {1, 2} and
γ (si), i ∈ {1, 2} are locally the farthest points to the equator on γ (s). Observe that there are
points where −λ = κ(so). At those points γ (s) crosses the equator. See the lower curves in
figures 3(e) and (f ).

Now, assume that κ̃(s) reaches its minimum at s3, α3 = κ̃(s3), and its maximum at
s4, α4 = κ̃(s4). Then κ̃ss(s3) > 0 and κ̃ss(s4) < 0 and using again (20) we have d2|J |2

ds2 (s3) < 0,

and d2|J |2
ds2 (s4) > 0. Therefore, |J |2 reaches local maximum at s3 > 0 and local minimum at

s4. Hence, γ̃ (s3) is locally the closest point of γ̃ (s) to the equator and γ̃ (s3) is locally the
farthest one. This time there are no points where −λ = κ(so) and γ̃d (s) does not cross the
equator. See the upper curves in figures 3(e) and (f ).

As d continues descending, the progression angles 
λ(d) of the coupled curves
(γ (s), γ̃ (s)) are the same and they need the same number of periods of their curvature to
close up. This situation is maintained until d reaches the curve d = 16λ2. At that point γ̃ (s)

crosses the noth pole of the sphere and then its progression angle increases by 2π with respect
to that of γ (s).

Finally, if 0 < d < δ1, then we have just one closed critical curve for any d satisfying
the closedness condition and Qd(x) has two real roots αi = κ(si), i ∈ {1, 2} verifying
α1 < −λ < α2 < 0. By making a similar discussion, we obtain a situation analogous to the
previous one, see figures 3(g) and (h).

If λ = 4, the above discussion is numerically showed in tables 2, 3 and graphically
described in figure 3.

3.2. Monotonicity intervals for 
λ(d)

We know that if λ = 0, then 
λ(d), the angular variation of γ (s) in one period of its curvature
κ(s), moves continuously in (0, 2π) as d moves in (0,∞) [7]. As we showed previously,
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Figure 4. Angular variations 
λ(d) for different values of λ.

Table 4. Asymptotic behaviour of 
λ(d).

Intervals of continuity
λ of 
λ(d) Variation of 
λ(d)

λ = 0 (0, ∞) limd→0 
λ(d) = 2π, limd→∞ 
λ(d) = 0

λ ∈ (0, 2
√

2) (0, 16λ2) limd→0 
λ(d) = 0, lim
d→16λ2− 
λ(d) = 
1 − π

(16λ2,∞) lim
d→16λ2+ 
λ(d) = 
1 + π, limd→∞ 
λ(d) = 0

(0, 108) limd→0 
λ(d) = 0, limd→108− 
λ(d) = −∞
λ = 2

√
2 (108, 128) limd→108+ 
λ(d) = −∞, limd→128− 
λ(d) = 
1 − π

(128,∞) limd→128+ 
λ(d) = 
1 + π, limd→+∞ 
λ(d) = 0
(0, δ2) limd→0 
λ(d) = 0, limd→δ2− 
λ(d) = −∞

λ ∈ (2
√

2, µ) (δ2, 16λ2) limd→δ2
+ 
λ(d) = −∞, lim

d→16λ2− 
λ(d) = 
1 − π

(16λ2,∞) lim
d→16λ2+ 
λ(d) = 
1 + π, limd→+∞ 
λ(d) = 0

λ > µ (0, δ2) limd→0 
λ(d) = 0, limd→δ2
− 
λ(d) = −∞

(δ2, ∞) limd→δ2
+ 
λ(d) = −∞, limd→+∞ 
λ(d) = 0

this is no longer true for the other values of λ. In accordance with the five cases described in
table 4, we give a graphical estimation of 
λ(d) in figure 4.

As we obtained in corollary 3, if λ � 2
√

2 then for any choice of n ∈ Z − {0} and any
choice of a natural number m we can find a closed curve γmn in S

2(1), which is a critical
point of Fλ(γ ) and that closes up in n periods of its curvature and after m trips around the
equator. This statement is no longer true when 0 � λ <

√
2. For instance, if λ = 0 we must

have 0 < m < n in order to have a closed classical elastica γmn having the above properties.
Moreover monotonicity of 
0(d) implies the uniqueness of critical curves γmn when they
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exist, [7]. If 0 < λ < 2
√

2 figure 4(b) suggests that, for a certain ν > 0, we are going to have
uniqueness in the above sense if 0 < λ < ν, but that we lose uniqueness if λ goes beyond
such a ν. We also know from our discussion in the proof of lemma 5 in appendix B, that in
this case 
λ(d) has a gap of length 2π when d = 16λ2 (which is shown in figure 4(b)). The
centre of this gap is measured by the number 
1 defined in (17). A graphical estimation of

1 for 0 < λ < 2

√
2 is given in figure 4(a). It shows that 
1 decreases from π to a value

close to −3.925 587 as λ goes from 0 to 2
√

2.
However, from our discussion following corollary 3, we see that uniqueness of critical

points for a given d does not hold when λ � 2
√

2. The picture of figure 4(c) shows indeed,
that for values of m, n close to 0 we are going to have two closed critical curves γmn, γ̃mn

which close up in n periods of its curvature and after m trips around the equator. But looking
at figure 4(c) again, we see that if λ � 2

√
2, apparently the branch of 
λ(d) corresponding

to d ∈ (δ2,∞) always crosses the d-axis, reaches a maximum and decreases asymptotically
to 0 after that. This fact is confirmed in lemmas 5 and 6. It means that we still have another
closed critical curve γ mn of Fλ(γ ) which also close up after the same number of periods and
trips around the equator, but rotating in the reverse sense as that of γmn. The closed ‘figure
eight’ λ-elastic curve that appears in proposition 4 corresponds to the value of d which makes

λ(d) = 0.

3.3. Energy of closed λ-elastic curves

Now that we have a reasonable knowledge of the critical points of Fλ(γ ), we would like to
numerically search for its minima. Obviously, circles of curvature κ = −λ are global minima.
If λ2 � 8, there are no more critical circles. If λ2 � 8, there are two more critical circles,
Cη1 , Cη2 , with curvatures η1 = λ+

√
λ2−8
2 and η2 = λ−√

λ2−8
2 , respectively. We have computed

the second variation formula of Fλ(γ ) in [2] and showed that Cη2 is always unstable and that
the once covered Cη1 is stable (multiple m-covers of this circle Cm

η1
, are stable provided m is

not too large, proposition 1.4, [2]).
For any λ � 0, d > 0, we have defined Eλ(d) in (18) as the energy of the critical curve

γ (s) in one period ρ of its curvature κ(s). By observing figure 5(b), which shows the graphic
of Eλ(d) for a value of λ verifying λ2 � 8, it seems that, in this case, the only minimum of
Eλ(d) is obtained as d → 0+. It corresponds to the global minimum given by the circle of
constant curvature κ = −λ. This circle is the only stable critical point for λ = 0, the classical
elastica case [7]. The situation changes drastically if λ2 � 8. To clarify ideas, we take again
λ = 4. Then, the energy function on this family of critical curves is represented in figure 5(a).
The intervals of continuity of 
λ(d) when λ = 4 are (0, δ2), (δ2,∞). If δ1 < d < δ2, for each
value of d satisfying the closedness condition (proposition 1), Qd(x) has four roots αi = κ(si),
i ∈ {1, 2, 3, 4}. Thus, two closed critical curves will appear γ (s) and γ̃ (s) with respective
curvatures κ(s) and κ̃(s) verifying α1 � κ(s) � α2 and 0 < α3 � κ̃(s) � α4. If d is not
in (δ1, δ2), then for each value of d satisfying the closedness condition, Qd(x) has two roots
αi = κ(si), i ∈ {1, 2}, and there is only one closed critical curve γ (s) whose curvature κ(s)

verifies α1 � κ(s) � α2. Now, for λ = 4, we denote the energy simply by

E(d) =
∫ ρ

o
(κ + 4)2 (21)

if d ∈ (0, δ2)
⋃

(δ2,∞), and define

Ẽ(d) =
∫ ρ

o
(̃κ + 4)2 (22)
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Figure 5. Variation of the Eλ(d) for different values of λ.

if d ∈ (δ1, δ2). A numerical evaluation of both functions is given in figure 5(a). The upper
graph in the interval (δ1, δ2) corresponds to Ẽ(d). As we know there are three closed critical
curves of constant curvatures Cηo , Cη1 and Cη2 . The minimum value of E(d), as d → 0+

(respectively, of Ẽ(d) as d → δ+
1 ) that we see in figure 5(a), corresponds to Cηo (respectively,

Cη1 ). As it is apparent from the picture, the circle Cηo of curvature ηo = −λ is a (global)
minimum for E(d), but the circle of curvature η2 is not. Analogously, the circle of curvature
η1 is a (local) minimum for Ẽ(d). These facts were formally proved in [2] as previously noted.
Moreover, since limd→0+ 
λ(d) = 0 if λ = 4, then for any choice of a natural number n
(respectively, m) we can find a sequence of closed critical curves of Fλ(d) which close up in
n periods of their curvatures (respectively, after m trips around the equator) and whose energy
E(d) converges to 0. See figures 4(d), 5(a) and observe that 0 is the energy in one period of
the circle with curvature −λ.

An important remark comes from figure 5(a). We can prove that limd→δ+
2
E(d) =

limd→∞ E(d) = ∞ and that E(d) reaches a minimum in (δ2,∞) which is denoted by
Einf . Furthermore, we may consider the ‘eight figure’ closed critical point β(s) obtained
in proposition 4, which corresponds to the value of dβ ∈ (δ2,∞) that makes 
4(dβ) = 0 (see
figure 3(c)). It closes up in one period of its curvature, its energy in one period is close enough
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Figure 6. Variation of the Fλ(d) energy for λ = 4.

to Einf and there is a sequence of closed non-convex critical curves whose angular variation in
one period approaches to that of β, (see figure 4(d)). Moreover, curves in this sequence need
more that one period of their curvature to close up. Therefore, these facts suggest that, for
λ = 4, there exists a closed critical curve of non-constant curvature β(s) which is also a local
minimum for the energy Fλ(d).

A numerical confirmation of this is given in figure 6. Figure 6(a) shows the total energy
Fλ(d) (for λ = 4) achieved on all the closed critical curves that we obtain as d → 0+ (that is,
as the critical points ‘approach’ to the circle Cηo of curvature −λ) and that need at most 200
periods of their curvature to close up. The minimum, of course, is obtained at Cηo . On the
other hand, figure 6(b) shows the total energy Fλ(d) (for λ = 4) achieved on all the closed
non-convex critical curves that we obtain as d → dβ (that is, as the critical points ‘approach’
to the ‘eight’ curve β(s)) and that need at most 200 periods of their curvature to close up. In
this case, the minimum is obtained at β(s). This numerical fact, if it were formally confirmed,
would set a neat difference with the classical elastic curve case, since the only stable closed
classical elastica are geodesics, [7]. Experimental results suggest that if λ2 > 8, the situation
resembles to that of case λ = 4.
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Finally, we want to give some concluding remarks that arise from our last comments. The
second variation formula of Fλ, as given in [1, 2], was derived for normal variations. In such
a form, it is useful to study the stability of critical points with simple curvature (as circles). It
has been used also to investigate the stability of other critical points, once a normal variation
is known which is a strong candidate to be source of instability (see, for instance, theorem 3.1
of [7]). This approach encounters serious computational difficulties if we want to check out
(even numerically) the stability of, for example, the ‘eight figure’ whose curvature is given
in (9).

On the other hand, it is plausible to expect that a standard version of the second variation
formula can be computed and that it will lead to generalized notions of index form, Jacobi
fields and conjugate points for λ-elastic curves. Then, one would expect that conditions to be
satisfied by minimizers of Fλ might be established in terms of conjugate points. Hence, one
might try to compute (at least numerically) the lowest eigenvalues in order to check out the
local minimizing character of the ‘eight figure’.

These considerations fall out of the scope of this paper and may set the path for future
investigations.
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Appendix A

Let γ (t) be a C∞ curve immersed in the two-dimensional standard unit sphere, γ : [0, 1] →
S

2(1). We denote by v(t) = ‖γ ′(t)‖ and κ(t) its speed and curvature respectively. As
usual, we also denote by s the arclength parameter and by γ (s), κ(s) the corresponding
reparametrizations. Let {T (s),N(s)} be the Frenet frame along γ (s), then the Frenet equations
are given by

∇T T = κN, ∇T N = −κT . (A.1)

Now, we consider the functional Fλ(γ ) = ∫
γ
(κ + λ)2 ds, acting on a suitable space � of

immersed curves in S
2(1). For example, � can be the space of closed curves or it may be

formed by curves satisfying appropriate first-order boundary data. Then, in order to derive the
first variation formula for Fλ, we take a variation of γ : [0, 1] → S

2(1) within the specified
space of curves, � = �(t, r) : [0, 1] × (−ε, ε) → S

2(1) with �(t, 0) = γ (t). Associated
with this variation is the variation vector field along the curve γ (t),W = W(t) = ∂�

∂r
(t, 0).

We also write V = V (t, r) = ∂�
∂t

(t, r),W = W(t, r), v = v(t, r), T = T (t, r), N = N(t, r),
etc, with the obvious meanings. We let V (s, r),W(s, r), etc, denote the corresponding
reparametrizations. The following formulae were obtained in [7]

W(v) = 〈∇T W, T 〉v, (A.2)

W(κ) = 〈∇2
T W,N

〉 − 2κ〈∇T W, T 〉 + 〈W,N〉. (A.3)

Using formulae (A.2), (A.3) and integration by parts, one gets

δFλ(γ )[W ] =
∫

γ

〈E(γ ),W 〉 ds + [B(γ,W)]1
0, (A.4)
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where E(γ ) and B(γ,W) represent the Euler–Lagrange and boundary operators respectively.
They are given by

E(γ ) = (2κss + κ3 + (2 − λ2)κ + 2λ)N, (A.5)

B(γ,W) = [2〈∇T W, (κ + λ)N〉 − 〈W, 2κsN + (κ2 − λ2)T 〉]1
0. (A.6)

Here the subscript s denotes differentiation with respect to the arclength. The boundary
operator B vanishes for curves in �. Hence, by using a standard argument it follows from
(A.4) and (A.5) that critical points of Fλ are characterized by satisfying

2κss + κ3 + (2 − λ2)κ + 2λ = 0. (A.7)

Appendix B

We consider the angular progression in one period of the curvature 
λ(d) defined in (15). We
need to know how this function behaves within its intervals of continuity. Let δ2,
1 and µ be
as defined in (6), (17) and (19) respectively. We have the following:

Lemma 5. Fix a real number λ � 0. Then the behaviour of 
λ(d) at the extremes of its
intervals of continuity is shown in table 4.

Proof. For the sake of brevity, we just consider here the case λ ∈ (0, 2
√

2) in some detail. The
remaining cases can be analysed similarly. Now, Qd(x) has two simple roots α1, i ∈ {1, 2},
verifying α1 < −λ < α2 for any d > 0, so we must pay attention only to the discontinuity
derived from d = 16λ2. We write (5) in the form

κ2
s = 1

4Q(κ) = 1
4 (κ − α1)(α2 − κ)((κ − u)2 + v2), (B.1)

where we have the following relations

0 = 2u + α1 + α2, d = λ4 + 4λ2 − α1α2(u
2 + v2), (B.2)

4 − 2λ2 = u2 + v2 + α1α2 + 2u(α1 + α2), (B.3)

−8λ = (u2 + v2)(α1 + α2) + 2uα1α2. (B.4)

Hence

u = − (α1 + α2)

2
, v2 = 3

4
(α1 + α2)

2 − α1α2 − 2λ2 + 4, (B.5)

d = λ4 + 4λ2 − α1α2((α1 + α2)
2 − α1α2 − 2λ2 + 4). (B.6)

Using (B.1) we can write


λ(d) =
∫ α2

α1

ϒ(κ, d) dκ, (B.7)

with

ϒ(κ, d) =
√

d(κ2 − λ2)(
d
4 − (κ + λ)2

)√
(α2 − κ)(κ − α1)((κ − u)2 + v2)

. (B.8)

If we take d → 0+, then one sees from (9), (10) and (11) that the curvature κ(s) approaches
to a constant −λ, and that the period of κ(s), ρ = 4K(M)

r
, approaches to 2π√

λ2+1
(M goes
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to 0 and r to
√

λ2 + 1). Thus the limiting shape of the curves which correspond to the
solutions of (5) as d goes to 0 is a circle of curvature κ ≡ −λ and radius 1√

λ2+1,
. Since

α1 � κ(s) � α2 < 0, α1 < −λ < α2 and, as a consequence of (B.1), κ(s) has no vertices
at the points where κ(s) = −λ, we see that the Killing vector field J (s) given by (12)
does not vanish on γ (s). Thus the limiting circle does not cross the noth pole and then
limd→0+ 
λ(d) = 0.

On the other hand, we have that limd→+∞ α1 = −∞ and limd→+∞ α2 = +∞, thus by
using (B.5) and (B.6) we obtain limd→+∞ v = +∞ and limd→+∞

(
v2

α1α2

) = −1. Hence, from
(B.2)–(B.4) one gets limd→+∞ u = limd→+∞(α1 + α2) = 0.

Now, let us write (B.7) in the form 
λ(d) = 
−λ
α1

(d) + 
λ
−λ(d) + 


α2
λ (d), where


−λ
α1

(d) =
∫ −λ

α1

ϒ(κ, d) dκ, 
λ
−λ(d) =

∫ λ

−λ

ϒ(κ, d) dκ,



α2
λ (d) =

∫ α2

λ

ϒ(κ, d) dκ.

(B.9)

They can be bounded by

∣∣
−λ
α1

∣∣ �
4
√

d
(
α2

1 − λ2
)

(d − 4(α1 + λ)2)
√

(λ + u)2 + v2
, (B.10)

∣∣
λ
−λ

∣∣ � 8λ3
√

d

(d − 16λ2)
3
2

, (B.11)

∣∣
α2
λ

∣∣ �
4
√

d
(
α2

2 − λ2
)

(d − 4(α2 + λ)2)
√

(λ − u)2 + v2
. (B.12)

Then, making use of (B.6) we have limd→+∞ 
−λ
α1

= limd→+∞ 
λ
−λ = limd→+∞ 


α2
λ = 0, and

therefore limd→+∞ 
λ(d) = 0.

Furthermore, defining 
1 as in (17), one can prove similarly that limd→16λ2− 
λ(d) =

1 − π and limd→16λ2+ 
λ(d) = 
1 + π (see figures 4(a) and (b)).

As for the remaining cases, we have that the cases λ = 0 (studied in [7]) and λ = 2
√

2 can
be obtained as limiting cases of the previous one. If 2

√
2 < λ < µ, then Qd(κ) has two simple

roots α1 < −λ < α2 for any d > 0 with the exception of d = δ2, where δ2 is given in (6). If
d = δ2, then α2 becomes a double root and 
λ(d) diverges. We also have the discontinuity
derived from d = 16λ2. The intervals of continuity are (0, δ2), (δ2, 16λ2), (16λ2,∞). If
λ > µ,Qd(κ) has again two simple roots α1 < −λ < α2 for any d > 0, with the exception
again of d = δ2. If d = δ2 then α2 becomes a double root and 
λ(d) diverges. But now we
do not have to worry about the discontinuity derived from d = 16λ2, because α4 = λ and
α2 < α4 for any d > 0. The intervals of continuity are (0, δ2), (δ2,∞). In all these cases, the
behaviour of 
λ(d) can be analysed as we did a little bit back with λ ∈ (0, 2

√
2). It is shown

in table 4 and graphically described in figures 4(b)–(d). �

Finally, the next lemma gives us some additional information about 
λ(d) which has
been used previously.

Lemma 6. For any given real number λ � 0, the angular progression 
λ(d) takes positive
values for d large enough.

Proof. We use the notation of lemma 5. Fix a number λ � 0 and take d ∈ (δ2,∞) large
enough so that the polynomial Qd(κ) has two simple roots satisfying α1 < −λ < λ < α2.
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Define ϒ(κ, d) as in (B.8). Assume first that κ ∈ (α1,−λ), then we obtain

ϒ(κ, d) �
4
√

d
(
α2

1 − λ2
)

(d − 4(α1 + λ)2)
√

κ − α1

√
(α2 + λ)((λ + u)2 + v2)

, (B.13)

ϒ(κ, d) � 4(κ2 − λ2)√
d
√

(α2 − α1)(−λ − α1)((α1 − u)2 + v2)
. (B.14)

One can find similar expressions if κ ∈ (λ, α2). Moreover, if κ ∈ (−λ, λ), then

4(λ2 − κ2)

d
� |ϒ(κ)| � 4λ2

√
d

(d − 16λ2)
√

d − δ2
, (B.15)

for λ > 2
√

2, and

4(λ2 − κ2)

d
� |ϒ(κ)| � 4λ2

√
d

(d − 16λ2)
√

d − 16λ2
, (B.16)

for λ < 2
√

2. Therefore, 
−λ
α1

satisfies


−λ
α1

�
8
√

d
(
α2

1 − λ2
)
(
√

λ − α1)

(d − 4(α1 + λ)2)
√

(α2 + λ)((λ + u)2 + v2)
= O

(
1

4
√

d

)
,


−λ
α1

� 4√
d
√

(α2 − α1)(−λ − α1)((α1 − u)2 + v2)

(
2

3
λ3 − α3

1

3
+ λ2α1

)
= O

(
1

4
√

d

)
.

Hence 
−λ
α1

= O
(

1
4√
d

)
> 0. Analogously, one can prove that 


α2
λ = O

(
1

4√
d

)
> 0. Finally, for


λ
−λ we have

O

(
1

d

)
= 16λ3

3d
�

∣∣
λ
−λ

∣∣ � 8λ3
√

d

(d − 16λ2)
√

d − δ2
= O

(
1

d

)
,

if λ > 2
√

2, and

O

(
1

d

)
= 16λ3

3d
�

∣∣
λ
−λ

∣∣ � 8λ3
√

d

(d − 16λ2)
√

d − 16λ2
= O

(
1

d

)
,

if λ < 2
√

2. Thus the angular progression satisfies

lim
d→+∞

4
√

d · 
λ(d) = lim
d→+∞

4
√

d
(

−λ

α1
+ 
λ

−λ + 

α2
λ

)
= lim

d→+∞
4
√

d
(

−λ

α1
+ 


α2
λ

) = C > 0. (B.17)

This concludes the proof. �
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